skip to main content


Search for: All records

Creators/Authors contains: "Skandalis, *"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Baden, Tom (Ed.)
    Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal’s awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes’ undulatory body motions induce reafferent feedback that can encode the body’s instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors’ preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception. 
    more » « less
  2. null (Ed.)
    Sensory feedback during movement entails sensing a mix of externally- and self-generated stimuli (respectively, exafference and reafference). In many peripheral sensory systems, a parallel copy of the motor command, a corollary discharge, is thought to eliminate sensory feedback during behaviors. However, reafference has important roles in motor control, because it provides real-time feedback on the animal’s motions through the environment. In this case, the corollary discharge must be calibrated to enable feedback while avoiding negative consequences like sensor fatigue. The undulatory motions of fishes’ bodies generate induced flows that are sensed by the lateral line sensory organ, and prior work has shown these reafferent signals contribute to the regulation of swimming kinematics. Corollary discharge to the lateral line reduces the gain for reafference, but cannot eliminate it altogether. We develop a data-driven model integrating swimming biomechanics, hair cell physiology, and corollary discharge to understand how sensory modulation is calibrated during locomotion in larval zebrafish. In the absence of corollary discharge, lateral line afferent units exhibit the highly heterogeneous habituation rates characteristic of hair cell systems, typified by decaying sensitivity and phase distortions with respect to an input stimulus. Activation of the corollary discharge prevents habituation, reduces response heterogeneity, and regulates response phases in a narrow interval around the time of the peak stimulus. This suggests a synergistic interaction between the corollary discharge and the polarization of lateral line sensors, which sharpens sensitivity along their preferred axes. Our integrative model reveals a vital role of corollary discharge for ensuring precise feedback, including proprioception, during undulatory locomotion. 
    more » « less